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Abstract

A general equation of state proposed by Parsafar and coworkers for compressed fluids is developed to compressed

liquid alkali metals. According to the resulting equation of state p=q2 is a linear function of q, where p is the pressure

and q is the molar density. The slope and intercept of the linear equation are linearly temperature-dependent, i.e., by

adjusting four temperature-independent parameters one can predict the volumetric behavior of dense molten alkali

metals. The equation of state has been employed to calculate the liquid density of compressed alkali metals over a wide

range of temperatures, from melting point up to 2000 K, and pressures ranging from saturated vapor pressure to 1000

bar. The agreement of the predicted results with experiment is remarkable. Also the equation of state has been used to

calculate densities, isobaric expansivities, and isothermal compressibilities of liquid alkali metals in the saturation state.

The linearity of bulk modulus versus pressure, common bulk modulus point, common compression factor point, linear

isotherm regularity, and the linearity of inverse isobaric expansivity versus pressure for compressed liquid alkali metals

has been checked by utilizing the present equation of state.

� 2003 Elsevier B.V. All rights reserved.

PACS: 51.30.+1; 51.35.+a; 61.25.Mv; 64.10.+h; 65.20.+w
1. Introduction

The reliable and consistent set of thermodynamic

data for liquid alkali metals is of essential importance.

This importance is based on their growing technical

applications, due mainly to their specific advantages for

high temperature applications. Liquid alkali metals

act as coolant in nuclear power plants. The rapidly

increasing fuel costs and need for improved thermal

efficiency of power plants consequently led to an in-

crease in the peak temperature of the cycles. Although,

the thermodynamic properties of liquid alkali metals are

widely investigated, there are temperature regions where

accurate information does not exist. Prediction of these

properties appears at present to be the only alternative

to the experimental difficulties associated with their

measurements.
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A general equation of state for solids has been re-

cently proposed by Parsafar and Mason [1]. The equa-

tion of state is based on expanding the internal energy

and pressure in terms of density and temperature as

E ¼ e0ðT Þ þ e1ðT Þq þ e2ðT Þq2 þ e3ðT Þq3 ð1Þ

and

pv2 ¼ A0ðT Þ þ A1ðT Þq þ A2ðT Þq2; ð2Þ

where E is the internal energy, q is the molar density, T
is the temperature, p is the pressure, v ¼ 1=q is the molar

volume, and ei and Ai are the expansion coefficients in

Eqs. (1) and (2), respectively. The coefficients Ai are re-

lated to ei with the following integral:

AiðT Þ
T

¼ Ciþ2 � ðiþ 1Þ
Z

eiþ1ðT Þ
T 2

dT ; ð3Þ

where Ciþ2 is a constant of integration. For temperatures

higher than the Debye temperature, the temperature-

dependent coefficients, AiðT Þ, are given as [1]
ed.
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Fig. 1. Linearity of pv2 versus q for Li at 500 K (�), 1200 K

(j), and 2000 K (N).
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AiðT Þ ¼ ai þ biT � CiT lnðT Þ; ð4Þ

where ai and bi are temperature-independent coeffi-

cients.

Recently, Parsafar et al. [2] have applied this equa-

tion of state to dense liquids and tested it against the

experimental data for a number of fluids including

nonpolar, polar, strongly hydrogen bonded, and quan-

tum fluids. The range of applicability of the equation of

state is for densities greater than the Boyle density, but

without upper limit in the density or temperature. It is

the purpose of this work to apply this equation of state

to molten alkali metals. In comparison with ordinary

fluids, alkali metals have different characteristics such as

interactions via two different singlet- and triplet-type

potentials and formation of molecular aggregations even

at low pressures [3–5]. However, it is worth mentioning

that there exist some similarities between fluid alkali

metals and ordinary fluids that lead us to check the

present equation of state for them. For example, liquid

and gaseous metals can be treated as simple monatomic

systems and like the normal fluids the law of corre-

sponding states [6–8], equation of state [9], the law of

rectilinear diameters [10,11], and the linear isotherm

regularity [12] are applied to them.
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Fig. 2. The same as Fig. 1 for K at 500 K (�), 1100 K (j), and

1800 K (N).
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Fig. 3. The same as Fig. 1 for Cs at 500 K (�), 1000 K (j), and

1600 K (N).
2. Comparison with experiment

2.1. pv2 versus q

We have used the experimental data by Vargaftik

et al. [13–18] to check the relationship between pv2 and q
for compressed liquid alkali metals. Figs. 1–3 show the

resulting curves for Li, K, and Cs, respectively, each of

which at three isotherms; one near the melting point,

one moderate, and one high temperature isotherm, over

a wide pressure range from 100 to 1000 bar. It is seen

that there is a linear relation between pv2 and q, i.e., it is
no need to consider the second order term in Eq. (2).

Therefore, Eq. (2) is reduced to the following simpler

form for liquid alkali metals:

pv2 ¼ A0 þ A1q: ð5Þ

The parameters A0 and A1 together with the R2 values of

the fit are shown in Table 1. Also, we have used the

parameters A0 and A1 to predict the liquid density of Li,

K, and Cs. The results are shown as average absolute

deviation per cent in Table 1. As it is seen in Table 1, the

maximum discrepancy is 0.230% and the overall average

absolute deviation is 0.053%.

2.2. Temperature-dependence of A0 and A1

The temperature-dependence of parameters A0 and

A1 are shown in Figs. 4 and 5, respectively, for liquid Na
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Fig. 5. The same as Fig. 4 for A1 with R2 ¼ 0:9978.

Table 1

The calculated values of the temperature-dependent parameters in Eq. (5) as a function of temperature for Li, K, and Cs

Metal T (K) Dp (bar) NP A0 (dm6 mol�2) A1 (dm9 mol�3) R2 AAD (%)

Li 500 100–600 4 )17.756085 0.241429 0.999999 0.000

1200 100–1000 6 )14.641306 0.228373 0.999998 0.000

2000 100–1000 6 )10.756379 0.205150 0.999996 0.002

K 500 100–1000 6 )56.827739 2.811108 0.999858 0.013

1100 100–1000 6 )37.835027 2.272362 0.999898 0.019

1800 100–1000 6 )19.668842 1.722804 0.999550 0.100

Cs 500 100–800 5 )75.340784 5.802916 0.999761 0.023

1000 100–1000 6 )52.636850 4.859289 0.999449 0.066

1600 100–1000 6 )27.878374 3.654336 0.998386 0.230

The last two columns represent the coefficient of determination and the average absolute deviation percent for the calculated densities.
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Fig. 4. Linearity of A0 versus T . The solid line represent the

beat fit through calculated values of A0 from Eq. (5) with

R2 ¼ 0:9993.

190 H. Eslami / Journal of Nuclear Materials 325 (2004) 188–194
as a typical example. It is evident that a linear equation

is sufficient to describe the temperature dependencies of
A0 and A1. The same relation exists for other liquid alkali

metals. Therefore, Eq. (4) can be rewritten as the fol-

lowing simpler form:

Ai ¼ ai þ biT : ð6Þ

We have used the experimental data [13–18] to adjust

parameters a0, b0, a1, and b1. The results are shown in

Table 2. The temperature-independent parameters a0,
b0, a1, and b1 are employed in Eqs. (5) and (6) to cal-

culate the liquid density of molten alkali metals. The

results are shown in Table 2 as average absolute devia-

tion and maximum deviation per cent. The agreement

with experimental data is remarkable.

2.3. Saturated thermodynamic properties

Eqs. (5) and (6) have been utilized to calculate the

saturated liquid densities of alkali metals. The experi-

mental values of saturated vapor pressures [13] are used

for this purpose. The deviation plots for the calculated

values of saturated liquid densities of alkali metals

compared with experimental values [13] are shown in

Fig. 6. The agreement is quite good. We have also

checked the present equation of state for the calculation

of isobaric expansivities, a ¼ �1=qðoq=oT Þp, and iso-

thermal compressibilities, b ¼ 1=qðoq=opÞT . By differ-

entiating Eq. (5), the following equations will be

obtained for a and b

a ¼ b0 þ b1q
2ða0 þ b0T Þ þ 3ða1 þ b1T Þq

ð7Þ

and

b ¼ 1

2ða0 þ b0T Þq2 þ 3ða1 þ b1T Þq3
: ð8Þ

Deviation plots for the calculated values of a and b of

saturated liquid alkali metals compared with experi-

ment [13] are shown in Figs. 7 and 8, respectively. The

agreement with experimental data is good.
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Fig. 6. Deviation plot for the predicted saturated liquid density

of Li (}), Na (�), K (M), Rb (�), and Cs ( ) compared with

experiment.

Table 2

Constants of Eq. (6) for alkali metals, average absolute deviation per cent, maximum deviation per cent, and the location of common

bulk modulus and common compression factor points for molten alkali metals

Metal a0
(dm6 mol�2)

b0
(dm6 mol�2 K�1)

a1
(dm9 mol�3)

b1
(dm9 mol�3 K�1)

NP DT (K) AAD

(%)

MD

(%)

qOB

(mol dm�3)

qOZ

(mol dm�3)

Li )18.54024 3.762779· 10�3 0.232210 )1.115· 10�5 94 500–2000 0.02 0.08 53.23 79.84

Na )34.99780 0.010498 0.810905 )9.058· 10�5 97 400–2000 0.16 1.21 28.77 43.16

K )57.12920 0.019413 2.529596 )3.435· 10�4 86 400–1800 0.20 1.34 15.06 22.58

Rb )66.91423 0.023433 3.619226 )4.783· 10�4 75 400–1600 0.24 1.51 12.32 18.49

Cs )78.31023 0.028824 5.332856 )7.529· 10�4 74 400–1600 0.29 1.82 9.79 14.68

The pressure range is from 100 to 1000 bar.
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Fig. 7. The same as Fig. 6 for isobaric expansivities.
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Fig. 8. Deviation plot for the calculated values of isothermal

compressibilities for Na (�), K (M), Rb (�), and Cs ( ) in the

saturated state compared with experiment.
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2.4. Near linearity of bulk modulus as a function of

pressure

Liquids and dense fluids show a number of remark-

able regularities, some of which have been known for
years without any theoretical basis. Employing the

present equation of state, we will examine a number of

these regularities for compressed liquid alkali metals.

Near linearity of bulk modulus (reciprocal isothermal

compressibility), B ¼ qðop=oqÞT , of a liquid as a func-

tion of pressure was first noticed by Tait over than 100

years ago and is the basis for a number of successful

equations of state for liquids [19–21]. We have examined

this regularity for the present equation of state by

plotting isotherms of bulk modulus for Rb, as a typical

example, in Fig. 9 which shows the validity of the reg-

ularity over a wide pressure range.

2.5. Common bulk modulus point

Huang and O’Connell [22] discovered a regularity in

which all isotherms of the reduced bulk modulus of a

compressed liquid as a function of density intersect at a

common point called �common bulk modulus point’.

The reduced bulk modulus is defined as

Br ¼
1

RT
op
oq

� �
T

; ð9Þ



8000

12000

16000

20000

0 200 400 600 800 1000

B
, b

ar

p, bar

Fig. 9. Linearity of the isotherms of bulk modulus versus

pressure for Rb at 500 K (j), 700 K (�), and 900 K (N). The

markers represent the experimental data and the curves are

calculated values from the present equation of state.
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Fig. 11. The same as Fig. 9 for Cs at 700 K (�), 900 K (�), and

1100 K (}).
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where Br is the reduced bulk modulus and R is the gas

constant. Huang and O’Connell [22] checked the regu-

larity for more than 250 fluids and used it as the basis of

a correlation scheme for the volumetric properties of

compressed liquids and liquid mixtures. Boushehri et al.

[23] presented a theoretical basis for this regularity in

terms of a statistical–mechanical equation of state [24].

By differentiating the present equation of state we

have obtained the following equation for the reduced

bulk modulus:

Br ¼
1

RT
½2ða0 þ b0T Þq þ 3ða1 þ b1T Þq2
: ð10Þ
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Fig. 10. Isotherms of the reduced bulk modulus versus density

for K. The points are experimental data at 800 K (�), 1000 K

(�), and 1200 K (}) and the curves represent calculated values

from Eq. (10).
We have calculated Br for K and Cs at three isotherms.

Figs. 10 and 11 show that isotherms of the reduced bulk

modulus versus density intersect at a single point for K

and Cs. The experimentally available data are also

shown in Figs. 10 and 11. The density at the common

intersection point, qOBr, can be calculated by setting

ðoBr=oT Þq equal to zero, i.e.,

qOBr
¼ � 2a0

3a1
: ð11Þ

The predicted values of the density at the common

intersection point, by using Eq. (11), are listed in Table 2

for liquid alkali metals.
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Fig. 12. Isotherms of compression factor versus density for Na.

The markers represent experimental data at 500 K (�), 800 K

(M), and 1100 K (}) and the curves represent calculated values

from Eq. (12).
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2.6. Common compression factor point

Najafi et al. [25] showed that the isotherms of com-

pressibility factor versus density for a dense low-

temperature fluid intersect at a common point. Some of

the existing equations of state such as the three-shell

modifications of Lennard-Jones–Devonshire [26], lin-

ear isotherm regularity [27], the statistical–mechanical

equation of state by Ihm et al. [24], and the dense system

equation of state [2] show this regularity. Eq. (5) may be

rearranged as follows:

Z ¼ p
qRT

¼ ða0 þ b0T Þq þ ða1 þ b1T Þq2

RT
; ð12Þ

where Z is the compressibility factor. We have examined

the present equation of state for this regularity. Fig. 12

shows the common compression factor point at three

isotherms for Na. A few available experimental data are

shown in Fig. 12. The density at the common intersec-

tion point, qOZ, can be calculated by setting ðoZ=oT Þq
equal to zero, which gives

qOZ ¼ � a0
a1

: ð13Þ

The calculated values of qOZ, by using Eq. (13), for li-

quid alkali metals are listed in Table 2.

2.7. Linear isotherm regularity

Recently, Parsafar and Mason [27] showed that the

isotherms of ðZ � 1Þv2 versus q2 are linear for liquids.

They have examined this regularity for a large number

of fluids and called it �linear isotherm regularity’. Ghatee
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Fig. 13. Linearity of the isotherms of ðZ � 1Þv2 versus q2 for Li

at 600 K (�), 1100 K (M), and 1600 K (}). The markers rep-

resent experimental data and the curves are calculated values

from the present equation of state.
et al. [12] showed that liquid alkali metals satisfy this

regularity. Here, we have checked this equation of state

for linear isotherm regularity against the experimental

data for Li, as a typical example, in Fig. 13. The present

equation of state shows the validity of this regularity in

agreement with experimental data [13–18].

2.8. Near linearity of inverse isobaric expansivity as a

function of pressure

Alavi et al. [28] and Boushehri and Eslami [29]

showed that the isotherms of inverse isobaric expansiv-

ity versus pressure are nearly linear. In this work the

present equation of state is examined for this regularity

in Fig. 14 for Rb. The regularity holds over a wide

pressure range for compressed liquid alkali metals.
3. Conclusion

This work shows that the original equation of state

for solids [1] can be extended successfully to liquid alkali

metals by performing some simplifications in its form

and in its temperature-dependent parameters. Analysis

of our predicted results shows that the equation of state

is accurate for predicting the liquid density of molten

metals over a broad temperature and pressure range.

Since a and b involve differentiation of the molar den-

sity, the errors become exaggerated, of course, the

resulting errors for the prediction of a and b are nearly

within the experimental uncertainties. For example, the

values of and b for liquid Rb at 1000 K obtained by

Bystrov et al. [30] and Kozhevnikov and Karpov [31]

differ by 11% and 13%, respectively.
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The well-known regularities for ordinary fluids can

be reproduced by the present equation of state. This fact

shows that although liquid metals have different char-

acteristics than that of ordinary fluids, they obey the

same regularities. Since the structure of a dense fluid is

determined primarily by the short-range repulsive for-

ces, liquid metals like ordinary fluids obey the same

regularities. The equation of state represents analytically

the location of the common bulk modulus and the

common compression factor intersection points. Fur-

thermore, the ratio of qOBr=qOZ obtained from the

present equation of state for alkali metals is equals to

0.67, which is close to that obtained from linear iso-

therm regularity equation of state, 0.77, for ordinary

fluids.

Finally, we have proposed a simple accurate equation

of state for liquid alkali metals. The equation of state

shows how the successful empirical regularities can be

obtained from simple explicit expressions. Also, this

work shows that to what extent the results for ordinary

fluids can be extended to liquid metals.
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